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Abstrad-The dynamic plastic deformation of a simply-supported circular plate subjected to a
pressure distribution, which is an arbitrary function of radius and time, is found to depend on the
moment history applied by the pressure and the moment history applied by the pressure excess over
a conical distribution. Each of these moment histories can be replaced by an equivalent rectangular
pulse in determining the final deformation at the center of the plate.

I. INTRODUCTION

A simply-supported circular plate, made of a rigid, perfectly-plastic material, is considered
to be loaded by a pressure distribution which varies with both radial position and time. A
closed-form solution is obtained for dynamic deformations which result solely from a basic
velocity mode and those which also involve a hinge band response. The plastic deformation
for the first case is found to depend on the pulse shape of the moment which the pressure
distribution applies about the edge of the plate. However, the final deformation depends
only on an equivalent rectangular moment pulse. This equivalent pulse has the same area
and centroid as the arbitrarily defined moment loading but-does not depend on details of
the loading history.

Conical pressure distributions, that is, those that decrease linearly with radial position,
result in only basic mode responses. Pressure distributions which lie above the conical shape
may activate a hinge band response also. The final plastic deformation is found to be
determined by both the applied moment history and the history of the pressure excess over
the conical shape. The applied moment history can be replaced again by its equivalent
rectangular pulse and an analogously defined equivalent rectangular pulse can be used to
characterize the moment produced by the excess pressure; these two equivalent rectangular
pulses determine the final plastic deformation at the center of the plate.

Similarities in the forms of the solutions for the basic velocity mode and hinge band
indicate the final plastic deformation at the center of the plate for pressure distributions
which produce a hinge band response is exactly equal to the deformation which would be
produced by the entire pressure distribution if it acted only in the basic mode minus the
deformation which would be produced by the excess pressure acting alone on the plate in
the basic mode.

Mode approximation techniques (Martin and Symonds, 1966) are being developed to
take advantage of the simplifications available in rigid, perfectly-plastic analysis methods
to obtain approximations to solutions for more realistic material behavior; e.g. see Kaliszky
(1970), Jones and Wierzbicki (1976), Symonds and Chon (1978), Jones and Guedes Soares
(1978), Symonds and Wierzbicki (1979), Symonds (1980a,b), Lepik (1982), Raphanel and
Symonds (1984), Trossbach and Martin (1985), and Symonds and Mosquera (1985). A
general feature of rigid, perfectly-plastic solutions, as discussed in Symonds and Fleming
(1984), is a transient phase with velocity patterns involving travelling hinges or hinge bands,
followed by a one-degree-of-freedom modal response. The results of this paper provide a
means of replacing arbitrary pressure distributions and histories acting on a circular plate
with rectangular pulses which eliminate the transient phase and activate only the simple
modal behavior. Although the deformation profiles are not identical, the equivalent loading
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produces the same final displacement at the center of the plate as the more general loading.
The closed-form solution obtained here for the time-dependent velocity and dis

placement profiles produced by arbitrary dynamic loadings should be useful in validating
computer programs having a dynamic plasticity capability. Moreover, although the assump
tion of rigid, perfectly-plastic material behavior restricts the range of direct applicability of
the results, the equivalent rectangular pulse concept may provide a basis for extending the
analysis to more general constitutive relations and for correlating experimental results.

Hopkins and Prager (1954) solved the problem of a simply-supported plate subjected
to a uniform pressure applied as a rectangular pulse in time. For uniform pressure dis
tributions, Perzyna (1958) derived a closed-form solution for arbitrary pulse shapes which
produce a basic mode response and obtained numerical solutions to the governing differ
ential equations for two pulse shapes that activated the hinge band response. Youngdahl
(1971) obtained a closed-form solution for the hinge band response and showed that the
influence ofpulse shape on the final plastic deformation produced by both response patterns
could be effectively eliminated by expressing the results in terms ofan equivalent rectangular
pressure pulse. This paper extends the closed-form solutions obtained previously to include
axisymmetric pressure distributions which vary arbitrarily with both position and time. The
pressure need not be separable into the product of a function of position and a function of
time, and it is assumed to cause only the basic mode and hinge band response.

Florence (1966, 1977), Conroy (1969), and Krajcinovic (1972) obtained solutions for
rigid, perfectly-plastic plates loaded uniformly over a central region by pressure pulses, and
Lepik (1974) and Youngdahl and Krajcinovic (1986) considered infinite plates subjected to
dynamic loading.

2. STATEMENT OF PROBLEM

Consider a simply-supported circular plate of radius R subjected to a dynamic pressure
pulse P(r, I), where r is the radial coordinate and I is time. Under the usual assumptions of
small deflection theory of thin plates, the equations of motion are

aw
V=at (I)

where M,(r, I) and Mo(r, I) are the radial bending moment and circumferential bending
moment per unit arc length, respectively, J.L is the mass per unit surface area, and V(r, t)
and W(r, I) are the lateral velocity and deflection. The pressure distribution is assumed to
be between the associated conical and uniform pressure distributions at every time I; i.e.

P(O, I) (I -i) ~ P(r, I) ~ P(O, I). (2)

This assumption assures that the bending moment is positive throughout the plate; this in
turn eliminates the possibility of the bi-linear velocity mode which may occur for loadings
which are more concentrated toward the center of the plate.

The material of the plate is rigid, perfectly-pl".stic, and insensitive to strain rate. Either
the Tresca hexagon or the Johansen square can be used as the yield condition since only
the first quadrant, where they coincide, is relevant.

When the limit load of the plate is exceeded at time Ii, a plastic hinge forms at the
center and the plate begins to deform in a conical velocity mode, which will be referred to
as the basic mode. The boundary and initial conditions are

M,(O, I) = M 0, M,(R, I) = 0, Mo(r, I) = M 0,

V(r,/J = 0, W(r, Ii) = 0

where M 0 is the bending moment at yield.

(3)
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For some loadings, the central hinge spreads into a hinge band having radius p(t). The
boundary condition at the center of the plate is then replaced by

M, = M 0, 0 ~ r ~ p(t),

aM,a;:- = 0 at r = p(t)

(4)

where the specification of the vanishing derivative follows from the restrictions on dis
continuities at a moving hinge given by Hopkins and Prager (1954).

3. SOLUTION FOR BASIC MODE

The flow rule associated with the yield condition implies that o2V/or2=0 for
o< r ~ R, so that we can take the basic velocity mode

R-r
V(r, t) =v(t)T (5)

where v(t) is the velocity at the center of the plate. The solution to the differential equations,
eqns (I), using the boundary and initial conditions (3), is then

12 i/v(t) = R J [H(t')-Hy] dr',
Jl. /,

12 i/w(t) = R J (t-t')[H(t')-Hy] dt',
Jl. /i

R-r
W(r, t) = T w(t),

M ( ) - (R
3
-2Rr

2
+r

J
)[H -H*()] h*(r,t)

, r, t - R 4 Y t + R

R-r r'+ & Jo (r') 2P*(r', t) dr'.

(6)

In the above. H(t) is the moment per unit angle applied about the edge of the plate by the
pressure distribution, H y = RM0 is the yield value of this moment, p* is the excess pressure
distribution after the associated conical distribution is subtracted from the applied pres
sure, H* is the applied moment produced by P* about the edge of the plate, and h* is the
applied moment produced by the portion of p* between rand R; Le.

9(t) = rr(R-r)P(r, t) dr,

P*(r,t) = P(r,t)-P(O,t) (R;r),

H*(t) = rr(R-r)P*(r, t) dr,

h*(r, t) = rr'(R-r')P*(r', t) dr'.

The motion begins at time ti such that

(7)
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(8)

It ends at time If when V = O. From the first of eqns (6) we have

f
'l

I, (H(t)-Hy]dt=O (9)

which implies that the average applied moment during the deformation is the applied
moment that initiates yielding.

Let [be the impulse (per unit angle) applied by the pulse H(t) during the deformation,
and let Ie be the interval between ti and the centroid of the pulse; i.e.

l'r
1= J" H(t) dt,

If'l
te = I (t - tJH(t) dt.

t;

(10)

The final plastic deformation at the center of the plate is then, using eqns (6), (9), and (10)

(I I)

Define an equivalent rectangular pulse of amplitude He and duration Te such that it
has the same impulse and centroid as H(t). Then

(12)

It can readily be shown that He > Hy if H(t) > Hy over a time interval starting at t j and
eqn (9) holds. In terms of He and te, eqn (11) becomes

(13)

For the basic deformation mode, the final plastic deformation produced by the applied
moment history H(t) is exactly equal to the deformation produced by a rectangular pulse
having the same area and centroid. In particular, P(r, t) need not be expressible as the
product of a function of position and a function of time, which implies that the shape of
the pressure distribution can vary with time and the correlation will still be exact.

A hinge band does not form at the center of the plate if M, is a relative maximum
there. Since M, = Moand oM/or = 0 at r = 0, the condition for no hinge band formation
is o2M,/or2< 0 at r = 0; using eqns (6) and (7), we have

(14)

Consequently, the motion is entirely in the basic velocity mode if the maximum value of
H*(t) is less than Hy. In particular, a hinge band cannot occur if per, t) -is always conical
since H* = athen.
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4. SOLUTION FOR HINGE BAND MODE

Consider loadings for which H*(t) exceeds Hy over some time interval. A hinge band
begins to form at the center of the plate at time tj*, such that

H*(tt) = Hy (15)

and grows to occupy the region 0 ~ r ~ p(t). The band reaches its greatest extent at time
fill; itthcn dccrcascs until timc tt such that p(tt) =O. The plate motion then reverts to the
basic velocity mode.

The solution given by eqns (5) and (6) holds for tj ~ t ~ t j*. Since M, = Me = M o
throughout the hinge band, the solution to eqn (1) becomes

1 rl (R r)V(r,t) = ~Jlr P*(r,t') dt'+ R [v(t)-v*(t)] + Vb(r) (16)

for t j* ~ t ~ tt and 0 ~ r ~ p(t). In the above, v(t) is given by the first of eqns (6); v*(t) is
defined by

the identity

12 i'v*(t) = R 3 [H*(t')-Hy] dt';
p. Ii·

R 4 [P(r, t)-P*(r, t)] = 12(R-r) [H(t)-H*(t)]

(17)

(18)

has been used so that subsequent equations will be simpler; and Vb(r) is a function to be
determined from continuity of velocity at p(t).

The flow rule implies that o2V/or2 = 0 outside of the hinge band. Consequently, we
will take

R-r
V(r,t) = Vp(t) R-p(t)' p(t) ~ r ~ R (19)

such that V(R, t) = 0 and Vp(t) is the lateral velocity at r = p. Substitution into eqn (1),
integration, and use of the boundary conditions then gives

~(~) = 12[h*(P, t) - H y] + 12[H(t) - H*(t)]
dt R-p p.(R-p)3(R+3p) p.R 4

and

(R-r) (R 3r+R 2r2-Rr3-4Rp 3+3p 4)
M, = rR(R-p)3(R+3p) [Hy-h*(p, t)]

h*(r t) R-ri'+T + & p (r')2 P*(r', t) dr'

(20)

(21)

for ti* ~ t ~ tr.
While the hinge band is growing, o2M,/or2 = 0 at r = p. Using eqn (21), this is equi

valent to
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12[h*(p, t) - Hy] - (R - p)2(R +3p)P*(p, t) = 0 (22)

which gives the relation between p and t for ti* ::::; t ::::; tm • Substitution of eqn (22) into eqn
(20), integration, and the use of pun = 0 and Vpun = vun gives

R [Rfl P*( , I') J
Vp(t) = ~p /l. I,' R~~' dt'+v(t)-v*(t)

where p' = p(1') and tt ::::; t ::::; tm • From eqn (19)

R-r[Rf'p*(, I') J
V(r,t)=R Ittr R~~' dt'+v(t)-v*(t)

for p ::::; r ::::; Rand tt ::::; t ::::; tm • Imposing continuity of velocity at r = p then gives

R-rft(r) P*(p' I') I ft(r)
Vb(r) =-- R" dt' - - P*(r, I') dt'

J.l tr -p J.l tr

R-r R-rf,(r) P*( , I') IiI
VCr, t) = R [vet) - v*(t)] + - R P " dt' + - P*(r, I') dt'

J.l Ir - p J.l t(r)

(23)

(24)

(25)

(26)

for 0 ::::; r ::::; p. The time r(r) is when p = r for t i* ::::; r ::::; 1m and is found from eqn (22).
Equations (16)-(27) remain applicable for the time interval tm ::::; t::::; t1 when the hinge

band is shrinking. The function Vb(r) is now known for every position r ::::; p within the
band so eqn (26) is valid for tm ::::; t::::; tf. We must still determine pet) for this interval and
VCr, t) outside the hinge band.

Setting r = p in eqn (26) gives Vp(t) for tm ::::; t ::::; t1, and substitution into eqn (20)
gives a differential equation for pet)

dp [i' P*(p, I') dt'+(R-p)i
t

8P*(p, I') dt'J
dt t(p) ,(p) 8p

12[Hy -h*(p, t)]
+(R-p)P*(p,t) + (R-p)(R+3p) = O. (27)

Using eqn (22), the solution is

12it [h*(p,t')-Hy] dt'-(R-P)2(R+3P)i' P*(p,t') dt' =° (28)
tIP) tip)

which relates p and t for 1m ::::; I ::::; t1.
At tf*, p = 0; since reO) = tt, P*(O, t) = 0, and h*(O, t') = H*(t'), eqn (28) gives

(29)

which determines tf. This indicates that the average value of H*(I) during the hinge band
mode is H y•

The velocity outside the hinge band is, using eqn (19)
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R-r R-rfttP) P*(p',t') , R-r I' * ' ,
V(r,t) = -[v(t)-v*(t)] + - R ,dt + (R ) P (p,t) dt

R Jl I~ -p Jl -p tIP)

(30)

for p ~ r ~ Rand tm ~ t ~ tr The results for W(r, t) for the hinge band mode are given in
thc Appendix.

The motion reverts to the basic mode for t(' ~ t ~ tr·
Let w*(t) be defined by

12 itw*(t) = -3 (t-t')[H*(t')-Hy] dt'
JlR Ir

(31)

and let w(t) be given by the second of eqns (6). For problems where H*(t) > Hy over some
time interval, the velocity and displacement at the plate center are then

V(O, t) = v(t), W(O, t) = w(t) for ti ~ t ~ ti*;

V(O, t) = v(t)-v*(t), W(O, t) = w(t)-w*(t) for ti* ~ t ~ t('; (32)

V(O, I) =V(/), W(O, t) = w(t) - w*(tt) for It ~ I ~ tc•

Consequently, the time Ie when the motion stops is given by eqn (9) again.
Let /* be the impulse per unit angle associated with H*(/) during the hinge band

existence, and let t: locate the centroid of H* between ti* and tf; that is

1 ft.
te* = 1* I;" (t-t;*)H*(t) dt.

(33)

Let H: and t:, the amplitude and duration of the equivalent rectangular pulse associated
with H*(t), be defined by

(34)

As before, H: > Hy if H*(t) > Hy over some time interval.
The final plastic deformation at the center of the plate then becomes, using eqns (6),

(9), (10), (12), (29), and (32)-(34)

5. SUMMARY AND CONCLUSIONS

A solution has been obtained for the dynamic plastic deformation of a simply-sup
ported circular plate made ofa rigid, perfectly-plastic material. The applied pressure P(r, I)
need not be separable into the product of a function of position and a function of time but
is assumed to lie between a conical and a uniform distribution at all times. The motion
starts at time Ii when the applied moment H(/) about the edge reaches the yield value By
and stops at time te when the area under the H(/) pulse between Ii and Ie equals the area

SAS 23:8-c
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Fig. l. Relations between H(I), Hy, and H•.

under Hy over this interval (see eqn (9) and Fig. 1). The motion is entirely in the basic mode
if H*(t), the applied moment produced by the pressure excess over the associated conical
distribution, is always less than Hy• The final plastic deformation then is conical and can
be expressed in terms of an equivalent pulse of amplitude H. and duration t. which has the
same impulse and centroid as H(t).

Deformation in a hinge band mode occurs if H*(t) ~ Hy in an interval beginning at
time t,* such that H*(t;) == Hy• The hinge band radius p(t) is given by eqn (22) while the
band is growing and by eqn (28) while it is shrinking. These equations must be solved
numerically for most loadings. However, it is unnecessary to determine p(t) if only the final
deformation at the center of the plate is needed since W(O, tr) depends only on equivalent
rectangular pulses associated with H(t) and H*(t).

As a specific example, consider P(r, t) given by

4t(to-t) { r}
P(r,t) = Po t~ I+[b(t)-I]R'

== 0, t > to

o~ t ~ to;
(36)

so that the pressure at the center of the plate is parabolic::, reaching its maximum value of
Po at t == to/2. The spatial distribution during the pulse is determined by b(t). Figure 2
shows H(t), H., H*(t), and H.* for Po == 48Hy/R 3 andb(t) = (1-t;)/(1o-t i); i.e. the pressure
distribution is conical when deformation begins at time ti and becomes uniform by the end
of the pulse. The final deformation shape for this loading is shown in Fig. 3, along with
results for the conical pressure distribution given by b(t) =0, 0 ~ t ~ to, and for the uniform
pressure loading given by b(t) == 1, 0 ~ t ~ to. The value of Po is the same for all three
curves.

The equations determining H*, ti*, tr, H.·, and tt are identical to those for the
corresponding unstarred quantities so that Fig. 1 pertains to the excess loading also. The
forms of the solutions given by eqns (13) and (35) for loadings which activate the basic
mode and those which cause hinge band formation and the analogies between the starred
and unstarred quantities suggest a "subtraction" principle: (1) compute the deformation
produced by H(t) assuming only the basic mode is active; (2) apply H*(t) independently
to the plate and compute the basic mode deformation it produces. The difference between
these two solutions is identical to the exact solution at the center of the plate.

If H. > Hy and H: < Hy, the result for step 2 is zero and the step 1 result is the correct
solution for the loading. If H. > H y and H: > Hy, the result for step 1 overestimates the
deflection at the center of the plate because the deformation in the hinge band region is
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Fig. 2. H(I), He, H·(I), and H: for example problem.
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Fig. 3. Final deformation shapes for example problems.

more rounded than the basic mode predicts; the amount of this overestimation is exactly
the central deflection which the excess load P*(r, t) would produce if acting alone. Sub
tracting the two conical deformation shapes underestimates the deflection at other points,
however (see Appendix for W(r, t) for H: > Hy).

This subtraction principle is a surprising result considering the nonlinearity of the
problem and may be only a fortuitous coincidence. The standard superposition principle,
adding the solution for the excess loading to the solution for the conical pressure distri
bution, significantly underestimates the central deflection and is not valid.
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APPENDIX

The displacement W(r, t) for the hinge band mode is found by integrating the velocity distribution given by
eqns (24), (26), and (30) and making use of eqns (22) and (28) for p(t). Another relation which is needed is

12 rl

[h*(p',t')-Hy] dt' = _1_ r' P*(p I') dt'
j.(P) (R-p')3(R+3p') R-pj.(PI '

(AI)

for t~ .;;: r .;;: 1m and 1m .;;: I .;;: tf, which can be verified by differentiating with respect to I and using eqns (22) and
(27); as before, fI' = p(l').

The resulting expressions for W(r, I) arc

R-r
W(r,l) =Rw(t) for ti ';;: I';;: li*' 0.;;: r';;: R;

R-r Ii'W(r, I) =-- [w(t)- W*(I)] + - (t- t')P*(r,1') dt'
R IJ. (,)

+ R-r r*) (I-I')P*~',I') dt'
IJ. J,~ R-p

for I~ .;;: I .;;: tf, 0 .;;: r .;;: p(t);

R-r (R-r)f,' (t-I')P*(p',1') ,
W(r, I) = --[w(I)-W*(I)] +-- R ' dlR IJ. ~ -p

for t~ .;;: t .;;: tm' pet) ,,;; r .;;: R;

(A2)
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R-r * 12(R-r) f' (t-I')[h*(p',t')-Hy] ,
W(r,l) = T[w(I)-w (t)J + --P.-jpt'l (R-p')l(R+3p') dl

I fPt,j R-ri'(·l (1- t')P*(p', t')+ - (1-1')P*(r,t') dt' + - ,dl'
P. t.l P. '.. R-p

R-r 12(R-r) f'(t-I')[h*(P',t')-Hy] ,

W(r,t) "" T [w(t)-W*(I)} +--p.-J.. (R-p')3(R+3p') dl

W( ) =R-r[ ()_ *(*)] 12(R-r)f"(lt- I')[h*(P',t')-HY]d'
r,t R wi w If + P. JPV> (R-p')3(R+3p') I

I iPf,j R 1*1 (t* I')P*(P' ')
( * ')P*( ') d ' -r f - ,I d'+- 'r-t r,II+- , I

P. f.l p.,: R-p

W(r I) = R-r(w(t)-w*(t*)]+ 12(R-r) pT (It-t')[h*(p', t')-Hy] dt'
• R r p. J,: (R-p')3(R+3p')

for tf ~ t ~ tf. p(/m) ~ r ~ R.
In the above, .(r) and p(r) are the times at which p = r when the hinge band is increasing and decreasing,

respectively. Consequently, using eqn (22), .(r) is the solution of

12{h*(r,.)-Hy]-(R-r)2(R+3r)P*(r,.) = 0

for t~ ~ t ~ ' m, and. using eqn (28), per) is the solution of

12 fP [h*(r.I')-Hr]dt'-(R-r)2(R+3r)f
P

P*(r,t')dt' =0Jw w
for 1m ~ {J ~ If·

(A3)

(A4)


